skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Xiyue S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Efficient manipulation of antiferromagnetically coupled materials that are integration-friendly and have strong perpendicular magnetic anisotropy (PMA) is of great interest for low-power, fast, dense magnetic storage and computing. Here, we report a distinct, giant bulk damping-like spin–orbit torque in strong-PMA ferrimagnetic Fe 100− x Tb x single layers that are integration-friendly (composition-uniform, amorphous, and sputter-deposited). For sufficiently thick layers, this bulk torque is constant in the efficiency per unit layer thickness, [Formula: see text]/ t, with a record-high value of 0.036 ± 0.008 nm −1 , and the damping-like torque efficiency [Formula: see text] achieves very large values for thick layers, up to 300% for 90 nm layers. This giant bulk torque by itself switches tens of nm thick Fe 100− x Tb x layers that have very strong PMA and high coercivity at current densities as low as a few MA/cm 2 . Surprisingly, for a given layer thickness, [Formula: see text] shows strong composition dependence and becomes negative for composition where the total angular momentum is oriented parallel to the magnetization rather than antiparallel. Our findings of giant bulk spin torque efficiency and intriguing torque-compensation correlation will stimulate study of such unique spin–orbit phenomena in a variety of ferrimagnetic hosts. This work paves a promising avenue for developing ultralow-power, fast, dense ferrimagnetic storage and computing devices. 
    more » « less
  2. Abstract

    Magnetic van der Waals heterostructures provide a unique platform to study magnetism and spintronics device concepts in the 2D limit. Here, studies of exchange bias from the van der Waals antiferromagnet CrSBr acting on the van der Waals ferromagnet Fe3GeTe2(FGT) are reported. The orientation of the exchange bias is along the in‐plane easy axis of CrSBr, perpendicular to the out‐of‐plane anisotropy of the FGT, inducing a strongly tilted magnetic configuration in the FGT. Furthermore, the in‐plane exchange bias provides sufficient symmetry breaking to allow deterministic spin–orbit torque switching of the FGT in CrSBr/FGT/Pt samples at zero applied magnetic field. A minimum thickness of the CrSBr of >10 nm is needed to provide a non‐zero exchange bias at 30 K.

     
    more » « less
  3. null (Ed.)
  4. Abstract

    Strong damping‐like spin‐orbit torque (τDL) has great potential for enabling ultrafast energy‐efficient magnetic memories, oscillators, and logic. So far, the reported τDLexerted on a thin‐film magnet must result from an externally generated spin current or from an internal non‐equilibrium spin polarization in non‐centrosymmetric GaMnAs single crystals. Here, for the first time a very strong, unexpected τDLis demonstrated from current flow within ferromagnetic single layers of chemically disordered, face‐centered‐cubic CoPt. It is established here that the novel τDLis a bulk effect, with the strength per unit current density increasing monotonically with the CoPt thickness, and is insensitive to the presence or absence of spin sinks at the CoPt surfaces. This τDLmost likely arises from a net transverse spin polarization associated with a strong spin Hall effect, while there is no detectable long‐range asymmetry in the material. These results broaden the scope of spin‐orbitronics and provide a novel avenue for developing single‐layer‐based spin‐torque memory, oscillator, and logic technologies.

     
    more » « less